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ABSTRACT

Bruchid beetles (Coleoptera: Bruchidae) are seed-eating
insects; most of their species’ feed on legumes. Bean crops
around the world (especially Phaseolus vulgaris) are
favorably attacked by the common bean weevil
(Acanthoscelides obtectus (Say)) and Mexican bean weevil
(Zabrotes subfasciatus (Boheman). A. obtectus and Z.
subfasciatus are the main pests of beans. These pests are
present in almost all bean-producing localities of Tanzania.
This study aimed to identify the genetic diversity of bean
bruchid weevils (A. obtectusand Z subfasciatus) in
Tanzania's bean-producing regions using molecular
taxonomy (12S rRNA and COI markers). The results obtained
did not show genetic diversity of A. obtectus present in
Tanzania but showed 100% identity. Z. subfasciatus showed
80.2% identity. Differences in some sequence alignment
explained the genetic diversity observed between A
obtectus and Z. subfasciatus. Better knowledge of bruchid
diversity present in Tanzania will help breeders and farmers
to propose effective management methods with an impact on
environmental changes and human health.
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INTRODUCTION

Common beans (Phaseolus vulgaris (L.)) are
essential legume crops. Farmers grow it for protein,
vitamins, minerals, and fibre. (Broughton et al,
2003; Castro-Guerrero et al.,, 2016). Dry seeds and
bean stems are eaten. Tropical and subtropical
cereal-based cropping methods grow it. Common
bean pests like Acanthoscelides obtectus and
Zabrotes subfasciatus harm crops in the field and
during storage. (Hill, 1989; Paul, 2007). Bruchid
infestation lowers grain's nutritional and market
value and makes seeds unfit for human eating,
agriculture, and commerce. These pests are mostly
controlled by fumigation with toxic chemicals like
carbon disulfide, phosphine, and methyl bromide or
dusting with several insecticides, which leave
residues on the grain and risk food safety. (Koona
and Dom, 2005; Swella and Mushobozy, 2007).

Plant-based extracts can manage bruchids, but
they are short-lived, degrade quickly, and may harm
seed germination. (Yusuf et al, 2011).
Morphological, biochemical, and molecular traits of
host plants govern bruchids in common beans.

Resistant varieties are economically important,
but ecotype variation in bruchids has made some
common bean lines vulnerable to the pest in some
regions. Breeders also face pest genetic diversity.
Common bean bruchid resilience has decreased due
to ecotypes. (Fox et al., 2010). Developing a cultivar
resistant to numerous insect ecotypes is difficult.
(Appleby and Credland, 2004). Understanding
phylogeographic patterns in the species is of
particular agronomic concern because knowledge of
the innate range of a species may give new data on
the climatic conditions in which the species evolved
initially and can also otherwise guide the search for
agents of biological control of A. obtectus and Z.
subfasciatusin  accordance of environmental
variation. In developing countries, farmers who
produce common bean experience significant losses
because of the high reproductive rate of bean
bruchids owing to their ability to reproduce in a
broad range of ecological conditions (Alvarez et al.,
2005). This modern expansion of the geographical
and hostrange of commonbean bruchids thus
threatens the production of other crops, and there is
an urgent need to control bruchid populations by
other means than chemical methods. This research
aimed to determine the genetic diversity of common
bean bruchids (A. obtectus and Z. subfasciatus) from
different bean-growing regions of Tanzania.

MATERIALS AND METHODS

Description of experimental site

Specimens of A.  obtectus were collected in
December 2020 from farmer’s sites in Songwe,
Morogoro, and Karatu, and Z subfasciatus were
collected from Kilimanjaro and Arusha in Tanzania
and then brought to the African seed health
laboratory at SUA for inoculation. The parent
samples from each location were inoculated in bean
genotypes A0-1012-29-3-3A and Njano gololi in a
plastic container separately. The trial was left
undisturbed for 14 days to allow bruchids to lay
eggs under room temperature of 30 * 50C and
relative humidity of 70 + 5%. Then all parents
removed from each plastic container were taken for
DNA extraction. Similarly, the newly emerged adult
F1 bruchids from AO0-1012-29-3-3A and Njano
gololi were extracted for DNA. Only 15 parents and
15 F1 bruchids from each location were used for
DNA extraction.

DNA extraction

The total genomic DNA was extracted using Quick-
DNA Tissue/Insect kit (from ZYMO research). A
total of 750 pL of bashing beadTM buffer was added
to the bruchid sample and then ground. After
grinding, the homogenized mixture was centrifuged
at 13000rpm for 2min. Then 400uL supernatant
was transferred to a Zymo-SpinTM III-F filter in a
collection tube and centrifuge at 8000rpm for 1min.
The cap was removed, and 1200puL genomic lysis
buffer was added to the filtrate in the collection tube
containing supernatant liquid and mixed well. After
mixing, 800uL was transferred to Zymo-SpinTM
IICR Column 1 in a collection tube and centrifuged
at 10000rpm for 1min. After centrifuge, the flow
was discarded from the collection tube, and the step
was repeated for the remaining 800 pL. About
200pL of DNA pre-wash buffer was added to the
Zymo-SpinTM IICR Column in a new collection tube
and centrifuged at 10,000g for 1 minute. After
centrifugation, 500uL of g-DNA Wash Buffer was
added to the Zymo-SpinTM IICR Column and
centrifuged at 10,000 g for 1 minute. In the final
step, the Zymo-SpinTM IICR Column was
transferred to a clean 1.5 ml microcentrifuge tube,
and 100 pL of DNA Elution Buffer was added
directly to the column matrix and centrifuge at
10,000 g for 1 minute to elute the DNA. The
extracted DNA was stored at -20 °C.

DNA amplification

Polymerase chain reaction (PCR) amplifications
were performed in a final volume of 25 pL, which
contained 1pL of extracted DNA, 12.5uL of 2x Tag-
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Master mix, 9.5 of nuclease-free water, and 1uL of
each forward and reverse primers. PCR conditions
were set corresponding to particular primers.
Sample forA. obtectusandZ subfasciatus were

amplified using 12Sbi and 12Sai for 12s rRNA; C1-J-
2183 and modified TL2-N-3014 for COI obtained
from Ingaba Biotech with their specific PCR
conditions as shown in Table 1 below.

Table 1. Polymerase chain reaction description of the primer used (Simon et al., 1994)

Primer Primer sequences

Primer base pair

125bi-F;125ai-R F-5'-

AAGAGCGACGGGCGATGTGT-3";

R-5- 379

AAACTAGGATTAGATACCCTATTAT-3’

C1-J-2183-F; Modified F-5"-
TL2-N-3014 f

CAACATTTATTTTGATTTTTTGG
TCCATTGCACTAATCTGCCATATTA -3’

-3 R-5- 736

PCR reactions were performed for each primer pair
on a Gene Amp® PCR System 9700 using the
following cycling conditions: initial denaturation at
92°C for 1min 30s; 30 cycles of 92°C for 30s,
annealing temperature at 55°C for 1 min 30s; and
final elongation at 72°C for 10 min. Annealing
temperatures were 55°C for both 12s rRNA and COI.

DNA visualization of Amplicons

To visualize the amplicons, 8ul of the PCR product
was separated by electrophoresis in 1% agarose gel
(1g of agarose dissolved in 100ml of 1 x TAE) with
subsequent staining by 3ul of ethidium bromide,
then electrophoresed at 100V for 50min until dye
markers have migrated to an appropriate distance.
The gel was photographed using a smartphone
Samsung Galaxy A20s (0916) without a UV sensor.

Preparation of sample and Mitochondrial DNA
sequencing

The integrity of the PCR amplicons was visualized
on a 1% agarose gel (CSL-AG500, Cleaver Scientific
Ltd.) stained with EZ-vision® Bluelight DNA Dye. In
order to identify nucleotide sequences from PCR
products, single bands of PCR amplified DNA
fragments generated by each of the 12 Sbi forward
primer and 12Sai reverse primer
for 12s rRNA and C1-J-2183 forward primer
and TL2-N-3014 reverse primer for COI were
excised from the agarose gels and recovered into
Agarose purification column using ExoSAP Protocol.

The fragments were sequenced using the
Nimagen, Brilliant Dye™ Terminator Cycle
Sequencing Kit V3.1, and BRD3-100/1000 according
to manufacturer’s instructions. The products were
labeled and then cleaned with the ZR-96 DNA
Sequencing Clean-up Kit (Catalogue No. D4053).
Purified PCR products were used for mitochondrial
DNA sequencing at Inqaba biotechnology in South

Africa using an applied Bio system ABI 3730XL
Genetic Analyser with a 50cm array, using POP7.
Forward and reverse primers produced gene-
specific nucleotide sequences in separate reactions.
BLAST was performed on parental and F1 bean
bruchid mitochondrial DNA sequences from Njano
gololi and AO-1012-29-3-3A bean lines. Clustal-W
aligned NCBI database and sequences to identify
sequence identity.

Sequence alignment and Phylogenetic analysis

The sequences were aligned using the CLUSTAL W
multiple alignment procedure in Macvector version
18.0.2 (Thompson et al, 1994), and a phylogenetic
analysis was performed in MEGA v.7 (Kumar et al,,
2016) using the maximum likelihood (ML) model.
For 12s RNA and COI, there were a total of 366 and
749 nucleotide positions, respectively, in the final
dataset. Finally, the distance matrices for 12S rRNA
and COI were constructed using a General Time
Reversible model (Tavare, 1986).

A Nearest-Neighbour-Interchange analysis was
used to draw a tree with bootstrap analysis of 1000
replicates/ bootstraps (Felsenstein, 1985). The tree
was drawn to scale, with branch lengths in the same
units as those of the evolutionary distances used to
infer the phylogenetic tree. The evolutionary
distances, computed using the General Time
Reversible model (Tavare, 1986), are expressed as
the number of uniform rates per site. Only bruchid
sequences were included in the analysis in the
General Time Reversible method (Tavare, 1986). A
sequence of the species
KP682959 Spermophagus sp. and  KP682946 S.
decellei (plant host Porana racemose) were added as
an outgroup species. Evolutionary analyses were
conducted in MEGA7 (Kumar et al, 2016). For A.
obtectus out of the group were
HQ178007 Bruchidius lutescensand HQ178006 B.
kiliwaensis.
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RESULTS

PCR amplicons: Data from DNA analysis of bruchid
species based on Mitochondria DNA have
demonstrated the similarity of bruchid ecotypes. No

A

L 132a3a43536a728a%10a11a12a13a14a15

379bp

a W BOmin)
gel ( 100V:50min)

PrMer. 125bi-F and 125ai-R

polymorphic bands of bean bruchids were observed
in the progenies that emerged from resistant and
susceptible bean genotype and their parents
(Figure. 1).

B Dl
L5,

b2d 3 4b 5 6070 8 %% 100 11b

1

1% gel(100v S0mn)
prmer [ Cl-J-2183-F and TL2-N-3014-R

Figure 1. PCR amplicons of the bean bruchid samples collected from different bean growing region.

Note: Picture A, PCR product amplifying the COI region. Picture B: PCR product amplifying the 12s rRNA. DL=
DNA Ladder (1kb; N3232S), 1b to 11b and 1a to 15a=bean bruchids mtRNA samples; water as a negative

control was maintained for PCR analysis.
Mitochondrial DNA sequencing 125 rRNA

Mitochondrial DNA sequences were obtained from
PCR-amplified products. The nucleotides were
compared to published sequences in the database
for the genes originally used to design primers. DNA
sequences for parents in Morogoro, Songwe, and
Karatu, as well as F1 bean bruchids that emerged
from Njano gololi of Morogoro and Karatu showed a
100% identity to the published A. obtectus sequence
from Brazil (KF157282), Sweden (MF925724) and
Switzerland (AY676676). The published nucleotide
sequence from China (KX825864), France
(AY945998), and Republic of the Congo
(MN420800) exhibited 99.7% nucleotide sequence
similarities.

Bean bruchids from Kilimanjaro and Arusha
were identified as Z. subfasciatus. Parents’ bruchids
from Arusha, F1 emerged from Njano gololi, and F1
from AQ0 29-3-3A of the Arusha region exhibited
82.8%, 82.8%, and 82.2% sequence identity,
respectively. Arusha parents, F1 from Njano gololi
and Kilimanjaro, showed 82.8% similarity to the
published Zabrotes subfasciatus from France
(AY945994). Emerged F1 in AO 10-12-29-3-3A from

Arusha showed 82.2% identity to Z. obliteratus from
France (AY945993).

Mitochondrial DNA sequencing COI

Mitochondrial DNA sequences were obtained from
PCR-amplified products. The nucleotides were
compared to published sequences in the database
for the genes originally used to design primers. DNA
sequences for parents bruchids in Morogoro, F1
bean bruchids emerged from Njano gololi in
Morogoro region and F1 adults emerged from AO
29-3A-3 in Morogoro, Songwe parents, Songwe F1
adults emerged from Njano gololi, Karatu parents
and Karatu F1 adults bruchids emerged from A0 29
3A 3 showed 100% nucleotide sequence similarities
to the published A. obtectus sequence from China
(KJ909879 and KX825864). Also, there was 99.7%
and 99.5% similarity to the published from Sweden
(MF925724) and India (MN120831), respectively.

For Z. subfasciatus species in Arusha region,
parents and F1 adults emerged from Njano gololi
showed 80.2% identity to Z. subfasciatus population
from China (KJ909880).
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Figure 2. Sequence alignment for mitochondrial gene (12S rRNA) of bean bruchids and the out groups.
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Figure 4. Phylogenetic tree developed from PAUP program with bootstrap values calculated based on the
nucleotide sequences of mitochondrial genes from bean bruchids (A. obtectus and Z. subfasciatus).

Note: HQ178007 Bruchidius lutescens and HQ178006 B. kiliwaensis were used as an out-group for A. obtectus
and AY945992 Z. planifrons, KP682936 Z. spectabilis, AY945991 Z. amplissimus, KP682959 Spermophagus sp,
KP682964 Spermophagus sp and KP682946 Spermophagus decellei were used as an out-group for Z
subfasciatus. Sequence genes for out-group were taken from NCBI database.
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Figure 4. Sequence alignment for mitochondrial gene (COI) of bean bruchids and the out groups.
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Figure 5. Phylogenetic tree developed from PAUP program with bootstrap values calculated based on the
nucleotide sequences of mitochondrial genes from bean bruchids (A. obtectus and Z. subfasciatus).

Note: EF484373 Bruchus pisorum was used as an out-group for A. obtectus and KY039140 Bruchus sp was
used as an out-group for Z. subfasciatus. Sequence genes for out-group were taken from NCBI database.

DISCUSSION

Bean bruchids are destructive storage pests that
adapt strongly to many environmental conditions.
In Tanzania, bean bruchids are found in all bean-
growing regions. If uncontrolled, populations of A.
obtectus and Z. subfasciatus can grow exponentially
and cause significant losses of bean seeds
(Southgate, 1979). Genetic diversity analysis helps
understand the genetic structure, differentiation,
and relationship among bean bruchids populations,
which makes sense when developing pest
management approaches and enacting resistance
screening and resistance breeding strategies.

The findings from this study showed no intra-
specific  genetic  variation = observed inA.
obtectus species despite the resistant bean
genotype's geographical location and feeding effect.
The results agree with studies of Ong’amo (2012),
who did a survey of genetic diversity and population
structure of Busseola segeta and confirmed thatB.
segeta moths did not exhibit genetic variation in
terms of host use. B. segeta presence in a wide range
of hosts in different fields without genetic variation

strongly suggests the existence of host use plasticity.
Some insects can overcome plant defense without
undergoing genetic variation.

Similarities of nucleotide sequence of A.
obtectus in geographical location of Tanzania may
be due to human trade of host bean. Since bean
weevils move with bean seeds the sequence identity
of A. obtectus may be due to transfer and exchange
of common bean from one region to another for
marketing within the country. This is in agreement
with (Duan et al, 2017), who reported that absence
or very low genetic variation between bean weevils
is apt to communicate and diffuse along with bean
seed using egg, larva, pupa, or adult, which likely
results in transfer and expansion of this pest
between regions and identical host selection
pressures in both populations.

A very low genetic variation of 0.6% observed
inZ. subfasciatus emerged from resistant bean
genotypes due to feeding effects of AO 10-12-29-3-
3A bean genotypes to bean bruchids. This was the
same as Gaete-Eastman et al. (2004), who did a
study on phenotypical and genetic variation
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of Neuquenaphis edwardsi and N. staryi and reported
a slightly intraspecific genetic variation of N.
edwardsi species due to the outcome of
environmental factors and/or host features
affecting aphid morphology.

This study observed interspecific genetic diversity
between A. obtectus and Z. subfasciatus. These two
species were observed to have different nucleotide
sequencing. The phylogenetic tree clustering plot
based on genetic distance between populations of A.
obtectus from different regions were clustered into
one genetic group and the population ofZ
subfasciatus into another group, suggesting the
existence of distinct genetic differentiation among
the two bruchid species

CONCLUSION

The results from this study did not show
within/intra-species genetic diversity of bean
bruchids, and the F1 progeny emerged due to
feeding on resistant or susceptible bean genotypes.
This concludes that the environment has nothing to
do with a genetic change in insects, perhaps for a
very long period since the mutation is a gradual
change. Hence virulence of an insect on attacking
beans can change according to environmental
conditions without undergoing genetic variations.

Variations between A. obtectus and Z.
subfasciatus have been validated in this experiment,
confirming the genetic variability and virulence of
each bean during storage. Of more importance is
that bruchid resistance should essentially focus on
addressing resistance to two bruchid species and
not resistance to both A. obtectus and Z. subfasciatus.
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